

Master of Engineering - ME (VLSI Design)

Syllabus

July 2022 Onwards

MANIPAL SCHOOL OF INFORMATION SCIENCES MANIPAL ACADEMY OF HIGHER EDUCATION MANIPAL - 576104.KARNATAKA. INDIA.

(A constituent unit of MAHE, Manipal)

Program Educational Objectives / Outcomes (PEOs)

PEO 1: Successfully engage in challenging careers with professional approach in the areas of analog & digital VLSI design and related domains of engineering.

PEO 2: Demonstrate competence in identifying and analyzing technical problems, suggest feasible and innovative solutions using their core competence in VLSI design and thereby support the technological growth of the nation.

PEO 3: Impart quality technical education, engage in research and contribute to knowledge creation and sharing.

PEO 4: Possess analytical, communicative and leadership skills, and demonstrate the ability to work in multidisciplinary and multi-cultural environments.

PEO 5: Be Self-motivated and remain continuously employable by engaging in lifelong learning.

(A constituent unit of MAHE, Manipal)

Program Objectives / Outcomes (POs)

PO1 Scholarship of Knowledge: Acquire in-depth knowledge of VLSI domain, with an ability to discriminate, evaluate, analyze, synthesize the existing and new knowledge, and integration of the same for enhancement of knowledge.

PO2 Critical Thinking: Analyze complex VLSI Eco System critically; apply independent judgement for synthesizing information to make intellectual and/or creative advances for conducting research in a wider theoretical, practical and policy context.

PO3 Problem Solving: Think laterally and originally, conceptualize and solve VLSI Design problems, evaluate a wide range of potential solutions for those problems and arrive at feasible, optimal solutions after considering public health and safety, cultural, societal and environmental factors in the core areas of expertise.

PO4 Research Skill: Extract information pertinent to unfamiliar problems through literature survey and experiments, apply appropriate research methodologies, techniques and tools, design, conduct experiments, analyze and interpret data, demonstrate higher order skill and view things in a broader perspective, contribute individually/in group(s) to the development of scientific/technological knowledge in one or more domains of engineering.

PO5 Usage of modern tools: Create, select, learn and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering activities with an understanding of the limitations.

PO6 Collaborative and Multidisciplinary work: Possess knowledge and understanding of group dynamics, recognize opportunities and contribute positively to collaborative-multidisciplinary scientific research, demonstrate a capacity for self-management and teamwork, decision-making based on open-mindedness, objectivity and rational analysis in order to achieve common goals and further the learning of themselves as well as others.

PO7 Project Management and Finance: Demonstrate knowledge and understanding of engineering and management principles and apply the same to one's own work, as a member and leader in a team, manage projects efficiently in respective disciplines and multidisciplinary environments after consideration of economic and financial factors

(A constituent unit of MAHE, Manipal)

MANIPAL

PO8 Communication: Communicate with the engineering community, and with society at large, regarding complex engineering activities confidently and effectively, such as, being able to comprehend and write effective reports and design documentation by adhering to appropriate standards, make effective presentations, and give and receive clear instructions.

PO9 Life-long Learning: Recognize the need for and have the preparation and ability to engage in life-long learning independently, with a high level of enthusiasm and commitment to improve knowledge and competence continuously.

PO10 Ethical Practices and Social Responsibility: Acquire professional and intellectual integrity, professional code of conduct, ethics of research and scholarship, consideration of the impact of research outcomes on professional practices and an understanding of responsibility to contribute to the community for sustainable development of society.

PO11 Independent and Reflective Learning: Observe and examine critically the outcomes of one's actions and make corrective measures subsequently and learn from mistakes without depending on external feedback.

(A constituent unit of MAHE, Manipal)

Program Structure

	ME (VLSI D)esign)	- I Se	emest	er				
6		No. c	No. of Hrs./week			am in Hrs	Maximum Marks		
Course Code	Course Name	Lecture	Tutorial	Practical	Credit	Duration of Exam in Hrs	Internal 50	External 50	Total 100
VLS 5001	High Level Digital Design	3	-	-	3	3	50	50	100
VLS 5101	Data Structures	3	-	-	3	3	50	50	100
VLS 5102	Digital Systems & VLSI Design	3	-	-	3	3	50	50	100
VLS 5103	Verification	3	-	-	3	3	50	50	100
	Elective - I	3	-	-	3	3	50	50	100
VLS 5051	High Level Digital Design Lab	-	-	3	1	3	50	50	100
VLS 5151	Data Structures Lab	-	-	3	1	3	50	50	100
VLS 5152	Digital Systems & VLSI Design Lab	-	-	3	1	3	50	50	100
VLS 5153	Verification Lab	-	-	3	1	3	50	50	100
	Elective - I Lab	-	-	3	1	3	50	50	100
MPT 5100	Mini Project - I	-	-	-	4	-	100	-	100
PSD 5100	Professional Skill Development - I	-	-	-	1	-	100	-	100
	Total	15	-	15	25				

	ME (VLSI D	esign)	- II S	emest	er				
		No. of Hrs. / week				Exam	Maxim	ks	
Course Code	Course Name	Lecture	Tutorial	Practical	Credit	Duration of Exam in Hrs	Internal 50	External 50	Total 100
VLS 5201	Advanced VLSI Design	3	-	-	3	3	50	50	100
VLS 5202	Low Power VLSI Design	3	-	-	3	3	50	50	100
VLS 5203	Scripting for VLSI	3	-	-	3	3	50	50	100
VLS 5204	Universal Verification Methodology	3	-	-	3	3	50	50	100
	Elective - II	3	-	-	3	3	50	50	100
VLS 5251	Advanced VLSI Design Lab	-	-	3	1	3	50	50	100
VLS 5252	Low Power VLSI Design Lab	-	-	3	1	3	50	50	100
VLS 5253	Scripting for VLSI Lab	-	-	3	1	3	50	50	100
VLS 5254	Universal Verification Methodology Lab	-	-	3	1	3	50	50	100
	Elective - II Lab	-	-	3	1	3	50	50	100
MPT 5200	Mini Project - II	-	-	-	4	-	100	-	100
PSD 5200	Professional Skill Development - II	-	-	-	1	-	100	-	100
	TOTAL	15	-	15	25				

	ME (VLSI Design	n) -III 8	t IV	Semest	ters		
VLS 6098	Project Work	-	-	-	25		
Total Numbe	r of Credits to Award Degree						75

(A constituent unit of MAHE, Manipal)

List of Electives (Theory)

	Elective - I		Elective - II
Course Code	Course Name	Course Code	Course Name
VLS 5131	CAD for VLSI	VLS 5231	Advanced Logic Synthesis
VLS 5132	System on Chip Design	VLS 5232	Formal Methods
ESD 5001	Digital Signal Processing	VLS 5233	Machine Learning for VLSI Design
		VLS 5234	Physical Design
		VLS 5235	Wireless Communications and Antenna Design
		ENP 5230	Entrepreneurship
		ESD 5232	IT Project Management
		ESD 5236	System Software

List of Electives (Lab)

	Elective - I		Elective - II
Course Code	Course Name	Course Code	Course Name
VLS 5181	CAD for VLSI Lab	VLS 5281	Advanced Logic Synthesis Lab
VLS 5182	System on Chip Design Lab	VLS 5282	Formal Methods Lab
ESD 5051	Digital Signal Processing Lab	VLS 5283	Machine Learning for VLSI Design Lab
		VLS 5284	Physical Design Lab
		VLS 5285	Wireless Communications and Antenna Design Lab
		ENP 5280	Entrepreneurship Lab
		ESD 5282	IT Project Management Lab
		ESD 5286	System Software Lab

(A constituent unit of MAHE, Manipal)

SEMESTER I

	VLS 5001: High Level Digital Design	L	т	Р	с	Total hours	
		3	0	0	3	36	
Course Outc	ome	·					
1. Describe	digital design and apply digital logic to solve real life	e problems					
2. Apply see	quential logic circuits and timing analysis						
3. Describe	FPGA, FIFO, and AMBA bus designs						
Unit	Topics					No. of Hours	
I	Introduction: Digital System; VLSI design Flow						
II Combinational Design: Number System: Binary; 1's Complement; 2's Complement. Single Precision, Double precision							
111	Arithmetic Circuits: Ripple Carry, Carry Look-Ahe Tree Adder: Brent Kung, Sklansky, Kogge Stone Add		kip, Car	ry Incr	ement,	2	
IV	Datapath Functional Units: Comparator; Funnel Shif Divider.	fter, Multi Ir	nput Add	er; Mul	tiplier;	2	
V	Optimization: logic optimization techniques, Branch	h method, P	etrick M	ethods		3	
VI	Sequential Design: Latch; Flip-flops; scan Flip-flop;	Registers S	et; Desig	n of co	ounters	2	
VII	FSM: Mealy Machine; Moore Machine; Mixed Machine	e, FSM optin	nization			4	
VIII	VIII Timing Analysis: Foundry Library; Liberty format; Gates: Propagation Delays; Flops: Propagation Delay; Setup time; hold Time; contamination delay; Recovery time; Removal time; Clock frequency; Jitter; Skew(source & network latency); Timing Paths; Multi-input path; Clock Budget; Multi-Clock; Multi-Cycle Path; False Path; Retiming						
IX	Introduction to FPGA: PLD; FPGA design flow					2	

Х	FPGA: Introduction to FPGA Boards	4
XI	Digital Design Application: FIFO Design-1; FIFO Design-2 [SNUG Papers]	4
XII	AMBA Bus Specification: AHB; APB	4
References		
4	na suis a Annuas shi ta Disital Dasimu". Elastakan	
÷	neering Approach to Digital Design",Flectcher	
2. "Rapid P	rototyping of Digital Systems - SOPC Edition", James O Hamblen, Tyson S Hall, Michae	el D Furman

- 3. "Simulation and Synthesis Techniques for Asynchronous FIFO Design", Clifford E. Cummings [SNUG Paper]
- 4. "Simulation and Synthesis Techniques for Asynchronous FIFO Design with Asynchronous Pointer Comparisons", Clifford E Cummings, Peter Alfke [SNUG Paper]
- 5. ARM Specification2.0

	VLS 5101: Data Structures	L	т	Р	С	Total hours					
		3	0	0	3	36					
Cours	Course Outcome										
1. De	esign programs for implementation of linked lists, sta	ack and que	ues.								
2. De	esign programs for implementation of binary search t	tree, sorting	and sea	arching,	diction	ary and Hash Table					
3. De	esign programs for graphs and shortest path techniqu	les.									
Unit	Topics		No. of Hours								
Ι	Algorithm specification and analysis techniques:	Analysis of r	ecursive	progra	ms.						
	Solving recurrence equations. General solution for a	a large class	of recu	rrences	•	3					
II	Elementary data structures : Implementation of A	rray, lists, s	tacks, qı	ueues,	Trees	17					
Ш	Sorting & Searching: B ubble, selection, insertion, Linear search and binary search.	Quick sort, ł	neap sor	t, merg	e sort.	6					
	Hash Tables and Graph: Hashing and Dictionaries.	Representati	on of gr	aphs. D	epth						
IV	First Searching. Breadth First Searching, Minimum co	urce	10								
	shortest paths and all-pairs shortest path										
Refer	ences					L					

(A constituent unit of MAHE, Manipal)

MANIPAL

- 1. "Data Structures& Algorithms" Aho, Hopcroft and Ulmann
- 2. "Data structures and algorithm analysis in C", Mark Allen Weiss
- 3. "Computer Algorithms", Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran
- 4. Introduction to Algorithms Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest. MIT Press.

	VL	S 5102: Digital Systems & VLSI Design	L	т	Ρ	с	Total hours
			3	0	0	3	36
Co	urse Outcor	ne		•			
1. 2. 3.	the second Be able to mask layou	d static and dynamic behavior of MOSFETs (Metal Oxi lary effects of the MOS transistor model. design and test static CMOS combinational and sec ut. experience designing integrated circuits using Comp	quential logi	c at the	transis	stor leve	
4.	Describe th	ne general processing technologies of CMOS integrate	ed circuits.	•	,		
	Unit Topics					No. of Hours	
	I	MOS transistor theory: Ideal I-V Characteristics, C-V Characteristics, CMOS Characteristics, Noise Margin, Static load MOS in transistor, Transmission gate, tristate inverter, MOS	verters, NEL	.S, NELT			10
	transistor, Transmission gate, tristate inverter, MOSFET Models, Non-ideal I-V effects.CMOS circuit and layout design: Combinational and Sequential Circuit Design, Basic physical design of simple gates, CMOS logic structures (Dynamic CMOS Logic, C2MOS Logic, CMOS and NP Domino					4	
	III	Circuit characterization: Resistance estimation, Capacitance estimation, de modelling the gate, Switching characteristics, CM dissipation, Scaling principles	-		•	•	7

(A constituent unit of MAHE, Manipal)

IV	CMOS Subsystem Design: Data path operations - Adder, Comparator, Counter, Semiconductor memory elements - SRAM, DRAM	5
v	CMOS Technologies: Wafer Formation, Photolithography, Well and Channel Formation, Silicon Dioxide (SiO2), Oxidation, Isolation Gate Oxide, Gate and Source/Drain Formations, Contacts and Metallization, Passivation, SOI.	5
VI	Layout Design Rules: Design Rule Background, Micron and Lambda Design Rules	4
VII	Manufacturing Issues: Antenna Rules, Layer Density Rules, Resolution Enhancement Rules.	1
References	·	

- 1. "CMOS digital integrated circuits analysis and design", Kang Sung Mo and Leblebici Yusuf, McGraw Hill, 1999.
- 2. "Principles of CMOS VLSI Design: A systems perspective", 2nd Edition, Neil H. E. Weste, Kamran Eshraghian, Addison Wesley, 1999.
- 3. "CMOS VLSI Design: A circuits & systems perspective", 3rd Edition, Neil H. E. Weste, David Harris, Addison Wesley, 2007.
- 4. "Microchip Fabrication", by Peter Van Zant, 5th Edition, McGraw-Hill, International Edition.

VLS 5103: Verification		L	Т	Р	С	Total hours				
	VES STOS. Vermeation	3	0	0	3	36				
Course Ou	Course Outcome									
1. Descri	1. Describe types of verification, verification plan including assertions for the digital VLSI circuits.									
2. Apply	verification environments and test cases for various o	designs and	create re	eusable	verifica	tion IP.				
3. Explai	n the coverage metrics for verification process, assert	ions, extens	ible veri	ficatio	n compo	nents, software				
test er	vironments, and post silicon validation.									
Unit	Unit Topics No. of Hour									
I	Introduction: Verification Challenges, Product	ivity, Desi	gn for	Verifi	cation,	2				

Methodology

2

3
2
5
8
4
3
2
3
3
1

MANIPAL (A constituent unit of MAHE, Manipal)

ELECTIVES - SEMESTER I

		L	Т	Р	C	Total hours
	VLS 5131: CAD for VLSI	3	0	0	3	36
Course	Outcome					
2. Desc Illus	ain various VLSI design flows, design methods and tea cribe various VLSI design steps and relevant design au trate design representations and graph based probler trate and apply CAD algorithms used in VLSI design au	tomation to n formulatio	•	lain typ	bes of sy	nthesis,
Unit	Topics					No. of Hours
I	Introduction to VLSI Design Methodologies: The VLSI deign problem, Design domains, Design Actions, Design methods and technologies					6
II	II Review of VLSI Design Automation Tools : Quick tour of design automation tools for various methods and levels of VLSI design, Physical Design, Verification, Design Management				8	
111	High Level Synthesis : Introduction to Synthesis, Design representations and transformations				3	
IV	High Level Synthesis Algorithms: Partitioning, Sch	eduling, Allo	ocation a	algorith	ims	10
V	Floor Planning and Placement : Floor planning cor plan sizing, Placement, Types of placement probler			ions an	d Floor	3
VI	Routing: Local routing, Types of local routing problems, Area and Channel routing problems and algorithms, Global routing					3
VII	VII Layout Compaction: Design rules, symbolic layout, Algorithms for layout compaction.					3
Referen	ices					1
2. "Gra	aph theory" , Narsingh Deo (Prentice-Hall of India pri aph theory" , Gibbons porithms for VLSI Design Automation" ,Sabih H. Gerez	·	v and Soi	ns)		

- 4. "High Level Synthesis -Introduction to chip and System Design", Daniel Gajski, Nikil Dutt, Allen Wu, Steve Lin (Kluwer Academic Publishers)
- 5. "Logic synthesis and verification algorithms", Gary D. Hachtel, Fabio Somenzi (Kluwer Academic Publishers)
- 6. "Computer aided logical design with emphasis on VLSI ", Frederick J Hill, Gerald R. Peterson (john Wiley & sons)

	VLS 5132: System on Chip Design	L	т	Р	С	Total hours
	ves stat, system on emp besign	3	0	0	3	36
Course	Outcome					
1. Des	cribe system architecture, identify hardware softwa	re co-desigr	n, give e	example	es of co-	design space,
exp	lain specification & modelling, pre-partition, partitio	on, analyse	post-pai	rtition a	analysis,	and describe
har	dware and software implementation.					
2. Rev	iew the processors and its micro-architecture and b	asic elemen	its in ins	structio	n handli	ng, recognize
rob	ust processors.					
3. Des	cribe on and off-die memories, explain memories in s	system on ch	nip, com	pare m	emory s	/stems, cache
me	mory, model memories, interconnects in system on ch	ip, explain	network	on chi	D.	
		17 1				
						No. of
Unit	Topics					Hours
	Introduction to System Approach.					
	Introduction to System Approach: System Architecture overview, Components	of the	System,	Intro	ducing	
I	Hardware/Software Codesign, The Driving Factors of	of Hardware	/Softwa	re Desig	gn, The	
				-		3
	Hardware-Software Codesign space.			-		3
						3
	Hardware-Software Codesign space.	is, Partition	ing,			3
	Hardware-Software Codesign space. Electronic System Level Flow:					3

	· · · · · · · · · · · · · · · · · · ·	
	Implementation,	
	Software Implementation.	
	Design Principles in SOC Architecture:	
	Heterogeneous & Distributed Data Processing, Heterogeneous & Distributed Data	3
	Communications, Heterogeneous & Distributed Data Storage, Hierarchical Control.	
IV	Processors:	6

(A constituent unit of MAHE, Manipal)

	Introduction to Processors, Processor Selection for SOC, Basic Concepts in Processor	
	Architecture, RISC Pipeline, Basic Concepts in Processor Microarchitecture, Basic	
	Elements in	
	Instruction Handling, Buffers, Branches, Robust Processors	
	Memory Design:	
	Introduction, Overview of SOC Internal and External Memories, Scratchpads and	
	Cache Memory, Cache Organization, Cache Data, Write Policies, Strategies for Line	
V	Replacement at Miss Time, Other Types of Caches, Split I- and D-Caches and the	,
۷	Effect of Code Density, Multilevel	6
	Caches, Virtual-to-Real Translation, SOC (On-Die) Memory Systems, Board-Based (Off-	
	Die) Memory systems, Simple DRAM and the Memory Array, Models of Simple	
	Processor-Memory Interaction.	
	Hardware Interconnects:	
	Introduction, Overview of Interconnect Architectures, Bus Architecture, SOC Standard	
VI	Buses, Analytic Bus Models, Beyond the Bus (NOC with Switch Interconnects), Some	4
	NOC Switch Examples, Layered Architecture and Network Interface Unit, Evaluating	
	Interconnect Networks.	
	Hardware/Software Interfaces:	
VII	Introduction, Synchronization Schemes, Memory-Mapped Interfaces, Coprocessor	3
	Interfaces, Custom-Instruction Interfaces.	
VIII	Application Studies:	7
VIII	3-D Graphics Processor / Software Defined Radio with 802.16, Universal Serial Bus	1
Refere	nces	
1 Mic	hael J. Flynn, Wayne Luk, "Computer System Design System-On-Chip", John Wiley & Son	is Inc
	lication, 2011.	is, me.,
		lectronic
	in Bailey, Grant Martin, Andrew Piziali, "ESL Design and Verification: A Prescription for E	lectronic
-	tem-Level Methodology", Morgan Kaufmann Publication, 2007.	
	rick R. Schaumont, "A Practical Introduction to Hardware/Software Codesign", Springer,	2010.
1 Dor	Anderson USB System Architecture (USB 2.0) Mindshare Inc. 2001	

4. Don Anderson, USB System Architecture (USB 2.0), Mindshare, Inc., 2001.

ESD 5001: Digital Signal Processing	L	т	Р	С	Total hours
	3	0	0	3	36

(A constituent unit of MAHE, Manipal)

MANIPAL

Course Outcome

- 1. Analyze Fast Fourier Transform (FFT) algorithms on computational complexity.
- 2. Design IIR and FIR filters using various sampling techniques.
- 3. Interpret Multirate Signal Processing and Adaptive Filters.
- 4. Infer architecture, memory management and pipelining concepts of General and TMS320C67XX Digital Signal Processor.

Unit	Topics	No. of Hours
I	Review: (Self Study): Introduction Classification of signals and systems, brief discussions on z-transform, inverse z-transform & Fourier transform, DFT, linear convolution using circular convolution & DFT	
II	FFT Algorithms: Radix-2 DIT-FFT Algorithm, DIF-FFT Algorithm. Assignments (Problems).	3
111	Filter Structures: IIR Filter Structure - Direct Form I & II, CSOS, PSOS & Transpose structures - FIR Filter Structures - Direct Form, Cascade form, Linear Phase Filter structures. Assignments (Problems).	5
IV	Design of FIR filters: Using Frequency Sampling & Windows - Assignments (Problems).	5
V	Design of IIR Filters: Butterworth & Chebychev filters design using impulse invariance & bilinear transformation techniques, Design of IIR filter using pole placement technique. Assignments (Problems).	7
VI	Multirate Signal Processing: Decimation, Interpolation, Sampling rate conversion by a rational factor, structures, Polyphase filter structures, Time variant Filter structure, Application of Multirate signal processing to Phase Shifter, Subband coding of Speech signal, Digital Filter Bank Implementation, QMF Filter bank	10

(A constituent unit of MAHE, Manipal)

MANIPAL

	VII	Adaptive Filters: Class of Optimal Filters - Predictive Configuration, Filter Configuration, Concept of adaptive noise cancellation, Noise Canceller Configuration. LMS adaptive Algorithm, Application of LMS algorithm to the optimal filter configurations. Adaptive noise canceller as a high-pass filter	3
,	VIII	DSP Processor: Introduction to PDSPs - Multiplier and Multiplier Accumulator (MAC), Modified Bus structures and memory access schemes, Multiple access memory, Multiported Memory, VLIW architecture, Pipelining, Special Addressing modes, On-chip Peripherals. TMS320C6711 DSP processor: Architecture, Instruction set and assembly language programming	3
Ref	erences	S	
2. 3. 4.	Oppenh Roman Proakis Rabinde	K Mitra, "Digital Signal Processing", McGraw Hill Education, 4 th Edition, July 2013. neim and Schafer, "Digital Signal Processing", Pearson, First Edition, 1975. Kuc, "Digital Signal Processing", McGraw-Hill Education, 1988. and Manolakis, "Digital Signal Processing", Prentice - Hall, Inc., Third Edition, 1996 er and Gold, "Theory and Application of Digital Signal Processing", Prentice Hall I Limited, 1988.	
6.	Hwei P	Hsu, Schaum's Outline of "Signals and Systems", 3rd Edition, 2013.	

7. Symon Haykins, "Signals and Systems", Wiley, Second Edition, 2002.

VLS 5051: High Level Digital Design Lab		L	т	Р	С	Total hours	
		0	0	3	1	36	
Course C	Course Outcome						
1. Desig	gn and Simulate combinational circuits using Verilog	and System\	/erilog.				
2. Anal	yze sequential logic circuits and timing analysis by si	mulating an	d synthe	sis pro	cedure.		
3. Expe	riment Datapath Functional Units by design and simu	ulation proce	edure.				
Unit Topics					No. of Hours		

(A constituent unit of MAHE, Manipal)

MANIPAL

I	Design and Simulation of combinational circuits: Number System: Binary; 1's Complement; 2's Complement, Ripple Carry, Carry Look-Ahead, Carry Skip, Carry Increment, Tree Adder: Brent Kung, Sklansky, Kogge Stone Adder	12		
11	Design and Simulation of sequential circuits: Latch; Flip-flops; scan Flip-flop Registers Set; Design of counters, Mealy Machine; Moore Machine; Mixed Machine	12		
	Design and Simulation of Datapath Functional Units and advanced Digital Systems: Comparator; Funnel Shifter, Multi Input Adder, Multiplier; Divider, FIFO Design	12		
Referen	nces			
1. Sutherland, S., et al. "SystemVerilog for Design: A Guide to Using SystemVerilog for Hardware Design and				

- Modeling, vol. 2." (2006).
- 2. SystemVerilog 3.1a Language Reference Manual

VLS 5151: Data Structures Lab		L	т	Р	C	Total hours	
		0	0	3	1	36	
Course	Outcome						
1. Anal	1. Analyze recursive programs, solve a general class of recurrence relations.						
	2. Design programs for implementation of linked lists, stack, queues, binary search tree, sorting and searching.						
3. Desi	gn programs for sorting and searching.						
4. Desi	gn programs for dictionary, hash tables, graphs and s	hortest path	n technic	ques.			
Unit	Unit Topics					No. of Hours	
Algorithm specification and analysis techniques: Analysis of recursive programs.Solving recurrence equations. General solution for a large class of recurrences.					3		
II	II Elementary data structures : Implementation of Array, lists, stacks, queues, Trees						

111	Sorting & Searching: Bubble, selection, insertion sort, Quick sort, heap sort, merge sort. Linear search and binary search.	6			
IV	Hash Tables and Graph: Implement Hashing and Dictionaries, graphs. Depth First Searching. Breadth First Search, Minimum cost spanning tree. Single source shortest paths.	9			
Referen	References				
1. Introduction to Algorithms - Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest. MIT Press.					
2. Data Structures and Algorithms - Aho, Hopcroft and Ulmann. Pearson Publishers.					

VLS 5152: Digital Systems & VLSI Design Lab		L	т	Р	C	Total hours
•		0	0	3	1	36
Course (Dutcome					
1. Simu	1. Simulate MOSFET, pass transistor, and Transmission gate characteristics.					
2. Desi	gn and simulate simple combinational and sequential	circuits usi	ng Cade	nce Vir	tuoso.	
3. Drav	v layout of simple digital circuits, carryout DRC and L	VS.				
Unit						No. of
	Topics					
	MOS transistor theory, CMOS circuit and layout de	esign:				
	I-V Characteristics of NMOS, PMOS, CMOS inverter - DC characteristics, Transfer					
I	Characteristics, Noise Margin, Pass transistor, Tra	nsmission g	ate, tris	tate in	verter,	15
	Design and simulation of simple Combinational and Sequential Circuits, CMOS logic					
	structures (Dynamic CMOS Logic, C2MOS Logic, CMC	S and NP Do	omino Lo	ogic)		
	Circuit characterization and CMOS Subsystem Des	ign:				
	Resistance estimation, Capacitance estimation, del	ay time cal	culation	, princi	ples of	
II	modelling the gate, Switching characteristics, CMOS gate transistor sizing, Power					
	dissipation. Data path operations - Adder, Comp	parator, Co	unter, S	Semicor	nductor	
	memory elements - SRAM, DRAM					
	Study of CMOS Technologies, DRC and Manufactur	ing Issues:				
Ш	Basic physical design of simple gates, combinationa	l and seque	ntial ciro	cuits		6
	DRC, LVS, Study of Antenna Rules, Layer Density Rul	es, Resoluti	on Enhar	ncemer	t Rules	

(A constituent unit of MAHE, Manipal)

References

- 1. "CMOS digital integrated circuits analysis and design", Kang Sung Mo and Leblebici Yusuf, McGraw Hill, 1999.
- 2. "Principles of CMOS VLSI Design: A systems perspective", 2nd Edition, Neil H. E. Weste, Kamran Eshraghian, Addison Wesley, 1999.
- 3. "CMOS VLSI Design: A circuits & systems perspective", 3rd Edition, Neil H. E. Weste, David Harris, Addison Wesley, 2007.
- 4. Cadence User manual.

	VLS 5153: Verification Lab	L	Т	Р	С	Total hours
		0	0	3	1	36
Course	Outcome					
1. Ana	yze simulation with direct and random test vecto	rs for comb	oinationa	al circu	its usin	g Verilog and
Syst	emVerilog.					
2. Desc	ribe sequential logic circuit simulation with SystemV	erilog const	ructs.			
3. Con	struct the verification environment for Datapath Fund	ctional Units	and sim	nulate.		
Unit	-					No. of
•	Topics					Hours
	Simulate and verify combinational circuits: Number	System: Bin	ary; 1's	Compl	ement;	
Ι	2's Complement. Single Precision, Double precision	, Ripple Car	ry, Carr	y Look-	Ahead,	12
	Carry Skip, Carry Increment, Tree Adder: Brent Kur	ıg, Sklansky,	Kogge S	Stone A	dder,	
	Simulate and verify sequential circuits: Latch; Flip-1	flops; scan F	lip-flop;	Registe	ers Set;	12
	Design of counters, Mealy Machine; Moore Machine;	Mixed Mach	nine			
	Construct verification environment for the verification	tion of Data	path Fur	nctiona	Units:	
	Comparator; Funnel Shifter, Multi Input Adder; Mult	iplier; Divid	er, FIFO	Design	, AMBA	12
	Bus Protocols					
Referen	ces					

- 1. Spear, Chris. SystemVerilog for verification: a guide to learning the testbench language features. Springer Science & Business Media, 2008.
- 2. SystemVerilog 3.1a Language Reference Manual

	VLS 5181: CAD for VLSI Lab	L	т	Р	c	Total hours
		0	0	3	1	36
Course Ou	itcome		•	•		
1. Experi	ment data structures for design representations using graphs	•				
2. Develo	op programs to implement high level synthesis algorithms.					
3. Develo	op programs to implement physical design algorithms.					
llait	Tania					No. of
Unit Topics						
I Introduction to Synthesis, Design representations and transformations						9
II High level synthesis algorithms						18
	Physical design algorithms					9
Reference	25					1
1. "Grap	h theory", Narsingh Deo (Prentice-Hall of India private ltd)					
2. "Algo	rithms for VLSI Design Automation",Sabih H. Gerez (John W	Viley an	d Sons)		
3. "High	Level Synthesis -Introduction to chip and System Design" , Da	niel Gaj	ski, Ni	kil Du	tt, All	len Wu, Steve
Lin (Kl	uwer Academic Publishers)					

VLS 5182: System on Chip Design Lab	L	т	Р	с	Total hours
VLS 5182: System on Chip Design Lab	0	0	3	1	36

MANIPAL (A constituent unit of MAHE, Manipal)

Course Outcome

- 1. Design of different SOC Architecture.
- 2. Design of simple Processors and Memory.
- 3. Practice 3-D Graphics Processor / Software Defined Radio with 802.16, Universal Serial Bus.

Un	it Topics	No. of Hours
I	Partitioning, Post-Partitioning Analysis and Debug, Post-Partitioning Verification, Hardware Implementation, Software Implementation.	7
II	Design of various SOC Architecture - Heterogeneous & Distributed Data Processing, Heterogeneous & Distributed Data Communications, Heterogeneous & Distributed Data Storage, Hierarchical Control.	10
	Design an simulation of simple Processors	6
IV	Design and simulation of Memory - Simple DRAM and the Memory Array, Models of Simple Processor-Memory Interaction	6
V	Study of 3-D Graphics Processor / Software Defined Radio with 802.16, Universal Serial Bus	7
Refe	rences	
1. <i>N</i>	ichael J. Flynn , Wayne Luk, "Computer System Design System-On-Chip", John Wiley 8	t Sons, Inc.
Р	ublication, 2011.	
	rain Bailey, Grant Martin, Andrew Piziali, "ESL Design and Verification: A Prescription for ystem-Level Methodology", Morgan Kaufmann Publication, 2007.	or Electronic
3. P	atrick R. Schaumont, "A Practical Introduction to Hardware/Software Codesign", Springer	, 2010.

4. Don Anderson, USB System Architecture (USB 2.0), Mindshare, Inc., 2001.

ESD 5051: Digital Signal Processing Lab	L	Т	Р	с	Total hours
	0	0	3	1	36

(A constituent unit of MAHE, Manipal)

Course Outcome

1. Practice the usage of MATLAB software tool.

MANIPAL

- 2. Design and analysis of various filter structures using MATLAB FIR filters, IIR filters, Adaptive filters.
- 3. Experiment the usage of DSP processors TMS320C6711 DSP processes.

Unit	Topics	No. of Hours
I	To get acquainted with the use of MATLAB software tool	6
II	Design and analysis of various filter structures using MATLAB - FIR filters, IIR filters, Adaptive filters	21
	Study and use of DSP processors - TMS320C6711 DSP processes.	9
Reference	es	

- 1. Sanjith K Mitra, "Digital Signal Processing", McGraw Hill Education, 4th Edition, July 2013.
- 2. Oppenheim and Schafer, "Digital Signal Processing", Pearson, First Edition, 1975.
- 3. Roman Kuc, "Digital Signal Processing", McGraw-Hill Education, 1988.
- 4. Proakis and Manolakis, "Digital Signal Processing", Prentice Hall, Inc., Third Edition, 1996.
- 5. Rabinder and Gold, "Theory and Application of Digital Signal Processing", Prentice Hall India Learning Private Limited, 1988.
- 6. Hwei P Hsu, Schaum's Outline of "Signals and Systems", 3rd Edition, 2013.
- 7. Symon Haykins, "Signals and Systems", Wiley, Second Edition, 2002.

MPT 5100: Mini Project - I	L	т	Ρ	с	Total hours
		0	0	4	48
Course Outcome					

- 1. Identify the real-world and social relevant problems and perform feasibility analysis for finding solution.
- 2. Develop solutions to the identified problems by applying research methodology and development life cycle with appropriate documentation by incorporating ethical standards.
- 3. Work effectively as a member in a team and communicate technical information effectively.

Unit	Topics	No. of Hours			
I	Problem identification, literature survey, formation of detailed specifications.				
II	Design and implementation of the proposed system architecture.	48			
	Demonstrate an ability to present and defend project work carried out to a panel of experts.				
Referenc	es				
1. Research articles and Online Resources.					

	PSD 5100: Professional Skill Development - I	L	т	Ρ	С	Total hours	
	· · · · · · · · · · · · · · · · · · ·	0	0	0	1	12	
Course Ou	Course Outcome						
	1. Identify and synthesize important themes in the field of engineering which transform socio-economic ecosystem.						
2. Develo	op competence to communicate effectively in oral and writt	en form	IS.				
	3. Effective management of time, involve in reflective learning and adhere to the professional code of conduct.						
Unit Topics					No. of Hours		

(A constituent unit of MAHE, Manipal)

MANIPAL

References						
II	Presenting in classroom to audience where content spoken, the conceptual knowledge and presentation skills (like audibility, eye contact, memory) of speaker is assessed.					
Ι	Report writing involves identifying the topic of interest from current issues in the domain of engineering and technology or inter disciplinary domains, then framing the order in the report, writing abstract, deciding on the content itself, conclusion and future scope of the topic and properly citing the references from bibliography.	12				

SEMESTER II

	VLS 5201: Advanced VLSI Design		т	Р	C	Total hours		
	·	3	0	0	3	36		
Course (Dutcome							
1. To le	1. To learn modeling, analysis, and design of analog circuits using CMOS technologies.							
2. Intro	duce the principles of analog circuits and apply the	echniques f	or the d	esign o	f CMOS a	analog		
integ	grated circuits.							
3. Appl	y the methods learned in the class to design and imp	lement prac	tical pro	ojects				
Unit	Topics					No. of		
	i opica					Hours		
	CMOS passive elements:							
	Resistor: Fabrication-Different layers used, La	yout techn	iques a	and pr	actical			
1	considerations, Temperature and voltage dependence resistors, Active resistors -							
	advantages, Capacitor: Fabrication - "poly-substra	te", "poly-	poly", "	metal-	poly"-			
	comparison, Layout techniques, Temperature a	and voltage	depend	lence,	Active			
	Capacitors.							

	en an ann of Minine, Manipul	
	Analog MOSFET Models:	
П	Low frequency MOSFET Model: Small-signal model of the MOSFET in saturation,	1
	Derivation for g_m and r_0	
	High frequency MOSFET Model: Variation of transconductance with frequency	
	Current Sources and Sinks:	
	Current Source, current Sink and Current Mirror - Differences, Applications , Current	
Ш	Mirror-Basic current mirror, The cascode current mirror - advantages, derivation ,for	3
	o/p resistance r0,Layout of current Sources/Sinks/Mirrors, Matching in MOSFET	J
	mirrors, Other Current Sources /Sinks/Mirrors- Wilson current mirror, Regulated	
	cascode current mirror	
	References:	
	Voltage Dividers, Sensitivity and Fractional temperature coefficients-Resistor-MOSFET	
	divider, MOSFET-only voltage divider, Current Source Self-Biasing-Threshold voltage	
IV	referenced self-biasing,	4
IV	Diode referenced self-biasing, Thermal voltage referenced self-biasing, Bandgap	4
	voltage references, Bandgap referenced biasing, Beta Multiplier Referenced Self-	
	Biasing-A voltage reference, Operation	
	in the Sub-threshold region	
	CMOS Single Stage Amplifiers:	
	Amplification - need for amplification, basic concepts, Important performance	
	parameters - "Analog Design Octagon", Common Source (CS) Amplifier-Derivation for	
	Av and comparison of CS Amplifier with: Passive resistor load, MOSFET/Diode-	
	Connected/ /Active load, Current source load - Common Drain Amplifier (or Source	
۷	Follower)-Derivation for Av and comparison of CD Amplifier with: Passive resistor load,	6
	MOSFET/Diode-Connected/ /Active load, Current source load - Common Gate	
	Amplifier-Derivation for Av and comparison of CG Amplifier with: Passive resistor	
	load, MOSFET/Diode-Connected/ /Active load, Current source load - The Push-Pull	
	Amplifier, Noise and Distortion in Amplifiers-A class AB Amplifier - Modeling Amplifier	
	Noise	
	Differential Amplifiers:	
	The Source Coupled Pair- Current Source Load, Common-Mode Rejection Ratio,	
N/I	Noise, Matching Considerations. The Source Cross-Coupled Pair-Current Source Load	
VI	Cascode Loads, Wide-Swing	4
	Differential Amplifiers, Current Differential Amplifier, Constant Transconductance	
	Diff-Amp.	
	1	1

	Frequency Response of Amplifiers:						
VII	Introduction, Frequency response of single stage amplifiers, Frequency response of	3					
	Differential pair.						
	Noise:						
VIII	Statistical characteristics of noise, types of noise, representation of noise in circuits,	2					
VIII	noise in single-stage amplifiers, noise in differential pairs, noise bandwidth.	3					
	Operational Amplifiers:						
IX	Basic CMOS Op-Amp Design-Characterizing the op-Amp, Compensating the Op-amp	2					
IX	Without Buffer, The Cascode Input Op-amp, Operational Transconductance	Z					
	Amplifiers.						
	Nonlinear Analog Circuits:						
х	Design of Basic CMOS Comparator, Characterizing the Comparator Adaptive Biasing,	2					
~	Analog Multipliers- The Multiplying Quad, Level Shifting, Multiplier Design Using	Z					
	Squaring Circuits.						
XI	Dynamic Analog Circuits:	2					
	The MOSFET Switch - Switched-Capacitor Integrator Circuits	2					
	Data Converter Fundamentals and Architectures:						
XII	Sample-and-Hold (S\H) Characteristics, DAC and ADC Specifications, Architectures $\ -$	3					
	Cyclic DAC, Pipeline DAC, Pipeline ADC, Integrating ADCs, SAR ADC						
Refere	nces						
1. "Cl	MOS Circuit Design, Layout, and Simulation", Baker, Li, & Boyce, IEEE Press, 1998.						
2. "De	esign of Analog CMOS Integrated Circuits", Razavi, McGraw-Hill, Inc., 2000.						
3. "Ar	nalog Integrated Circuit Design ", Johns & Martin, , John Wiley & Sons, 1997.						
4. "Cl	MOS Analog Design, 2nd Ed.", Allen & Holberg, Oxford Univ. Press, 1987.						
5. "Ar	nalysis and Design of Analog Integrated Circuits ",Gray & Meyer, John Wiley & Sons, 1984.						
J. A							
	nalog VLSI",Mohammed Ismail, & Terri Fiez, , McGraw-Hill, Inc.						
6. "Ar	nalog VLSI" ,Mohammed Ismail, & Terri Fiez, , McGraw-Hill, Inc. _SI - Design Techniques for Analog and Digital Circuits",Geiger, Allen, & Strader McGraw·	Hill, Inc.,					

VLS 5202: Low Power VLSI Design	L	Т	Ρ	С	Total hours
	3	0	0	3	36

Course	Outcome					
1. De	cribe various components of power in CMOS VLSI Design.					
2. Co	nprehend various leakage power reduction techniques, technology and scaling related as	pects of low				
power VLSI design.						
3. Ex	lain dynamic power reduction techniques and system level issues.					
Unit	Topics	No. of Hours				

I	Introduction to Low Power Design	2
II	Overview of power dissipation in CMOS: Dynamic and Static power components, Leakage current components, Factors affecting leakage power, Examples	5
111	Circuit techniques for leakage power reduction: Stacking - natural and artificial, Multiple V _{th} techniques - Multiple Channel Doping's, Multiple Oxide CMOS (MOXCMOS) Circuits, Multiple Channel Lengths, Multiple Body Biases, Multi-threshold-voltage CMOS (MTCMOS), Dual Threshold CMOS, Variable Threshold CMOS (VTMOS), Dynamic Threshold CMOS (DTMOS), Dynamic V _{th} techniques - V _{th} hopping scheme, Dynamic voltage scaling (DVTS) scheme.	8
IV	 Technology scaling for dynamic power reduction: Scaling techniques - constant voltage, constant field and lateral scaling. Voltage scaling approaches: Reliability-Driven Voltage Scaling, Technology-Driven Voltage Scaling, Energy x Delay Minimum Based Voltage Scaling, Voltage Scaling through Optimal Transistor Sizing, Voltage Scaling using Threshold Reduction, Architecture-Driven Voltage Scaling. 	8
v	Glitch power : Generated and propagated glitches, Glitch power analysis, Reduction techniques, Gate triggering approach.	3
VI	Clock gating: Principle, Combinational and sequential clock gating, Clock gating efficiency.	2
VII	Adiabatic techniques for low power	2

I	IX Logic optimization for low power, Power modelling, Power analysis						
	X System level issues in multi-voltage designs, Level shifters						
)	XI Low power design of building blocks						
Ref	erences						
1.	"Low-Power CMOS VLSI Circuit Design", Kaushik Roy and Sharat C. Prasad, Wiley-Interscience	ce.					
2.	"CMOS Low Power Digital Design", A. Chandrakasan & R. Brodersen, Kluwer Academic Pubs.	1995.					
3.	"Low Power Design Methodologies", J. Rabaey & M. Pedram, , Kluwer Academic Pubs. 1996						
4.	"Low - Power Digital VLSI Design, Circuits and Systems", Bellaour & M.I. Elamstry ,Klu	wer Academic					
	Publishers, 1996.						
5.	S. Imam & M. Pedram, Kluwer Academic Publishers, 1998.						
6.	"Logic synthesis for Low - power VLSI Designs", B.G.K.Yeap, "Practical Low Power Digital	VLSI Design",					
	Kluwer Academic Publishers, 1998.						
7.	"Power Aware Design Methodologies", Pedram, Massoud, Rabaey, Jan M., Kluwer Academic	Publishers.					
8.	"Low-power Digital Systems Based on Adiabatic- Switching Principles", W.C. Athas, L. S	wensson, J.G.					
	Koller and E. Chou, , IEEE Transactions on VLSI Systems, vol. 2, pp. 398-407, December 1994.						
9.	"A survey of power estimation techniques in VLSI circuits", F. Najm, IEEE Transactions on	VLSI Systems,					
	vol. 2, pp. 446-455, December 1994.						

	VLS 5203: Scripting for VLSI	L	Т 0	Т	т	т	Т	Т	Р	C	Total hours
		3		0	3	36					
Course (Dutcome			•							
 Discover shell script programmatically using different features and debugging the code. Apply SED & AWK commands to do more complex task in easy way. Apply PERL scripts that create and change scalar, array and hash variables. 											
Unit Topics						No. of Hours					

(A constituent unit of MAHE, Manipal)

MANIPAL

Ι	OS, h/w, kernel, File system, Process, Networking, Version control	5
II	II Variables, Arithmetic, echo, Quotes, Redirection, pipe, filters, Wild cards, exit status Command line arguments, constructs, Constructs	
	Cut , paste , tr, uniq	1
IV	Sed, Grep	4
۷	Awk and Make	5
VI	Introduction, command line, Pattern matching, Subroutines, Formats, References, Packages, Modules, Threads , overloading	16
Refer	ences	
1. "I	ntroduction to Linux - A Beginner's Guide", Machtelt Garrels	
2. "l	Jnix shell programming", Stephen G. Kochan, Patrick H. Wood	
3. "S	Sed & awk", Dale Dougherty, Arnold Robbins	
4. "	Programming Perl", Larry Wall, Tom Christiansen, Jon Orwant	

VI	S 5204: Universal Verification Methodology	L	Т	Р	С	Total hours
		3	0	0	3	36
Course (Dutcome					
1. Mode	el a scenario for Verification of a DUT in UVM.					
2. Anal	yze the usefulness of a driver, monitor, checker, tes	t cases in U\	/M verifi	ication	environ	ment.
3. Expl	ain component configuration and factory, Register A	ostraction La	ayer and	TLM co	ommunio	cations
4. Desi	gn test bench to verify the functionality of a design.					
5. Desi	gn a VIP for an IP as a project.					
llait						No. of
Unit	Topics					Hours
	UVM overview: Verification Planning and Cove	erage-Driven	Verific	cation,	Multi-	
I	Language and Methodologies. UVM Testbench an	d environme	ents, Int	terface	UVCs,	2
	System and Module UVCs, the System Verilog UVM o	lass library				

	(A constituent unit of MARE, Mampai)	
II	Object Oriented Programming: Introduction, What is an object in OOP, Distributed development environment, Classes, Objects, Programs, Using generalization and inheritance, polymorphism in OOP, Downcast, Class libraries, Static methods and attributes, parameterized classes, packages and namespaces	3
111	UVM library basics: Using UVM library, Library Base Classes, the uvm_object class, the uvm_component class, UVM configuration mechanism, TLM in UVM, UVM factory, UVM message facilities, callbacks.	2
IV	Interface UVCs: Stimulus modeling and generation, creating the driver, creating the sequencer, connecting the driver and sequencer	5
V	Automating UVC Creation: Creating the collector and monitor, modeling topology with UVM, creating the Agent, creating the UVM verification component, creating UVM sequences, configuring the sequencer's default sequence, coordinating end-of-test, implementing protocol-specific coverage and checks, handling reset, packaging interface UVCs	3
VI	Component Configuration and Factory: Establish and Query Component Parent-Child Relationships, Set Up Component Virtual SystemVerilog Interfaces with uvm_config_db, Constructing Components and Transactions with UVM Factory, Implement Tests to Configure Components, Implement Tests to Override Components with Modified Behavior	3
VII	UVM Callback: Create User Callback Hooks in Component Methods, Implement Error Injection with User Defined Callbacks, Implement Component Functional Coverage with User Defined Callbacks, Review Default Callbacks in UVM Base Class.	2
VIII	Simple Testbench integration: Testbenches and Tests, creating a simple testbench, testbench configuration, creating a test, creating meaningful tests, virtual sequencers and sequences, checking for DUT correctness, implementing a coverage model.	4
IX	Stimulus generation topics: Fine control sequence generation, executing multiple sequences concurrently, using p_sequencer, using pre_body() and post_body() methods, controlling the arbitration of items, interrupt sequences, protocol layering.	2
Х	Register Abstraction Layer: Registers, Specification, Adapter, Integrating, Integration, Register Model Overview, Model Structure, Quirky Registers, Model	4

(A constituent unit of MAHE, Manipal)

	Coverage, Back Door Access, Generation, Stimulus Abstraction, Memory Stimulus,	
	Sequence Examples, Built in Sequences, Scoreboarding, Functional Coverage.	
x	System UVCs and Testbench Integration: Introduction, module and system UVC architecture, sub-components of module and system UVCs, module UVC configuration, the testbench, sequences, coverage, stand-In mode, scalability concerns in system verification, module UVC Directory structure.	3
Х	TLM Communications: TLM Push, Pull and Fifo Modes, TLM Analysis Ports, TLM Pass-IIThrough Ports, TLM 2.0 Blocking and Non-Blocking Transport Sockets	3
Ref	erences	
1.	Sharon Rosenberg, Kathleen Meade, "A Practical Guide to Adopting the Universal Verificatior (UVM)", Lulu publishers, 2010.	n Methodolog
2.	Vanessa R. Cooper, "Getting started with UVM: A beginner's guide", Verilab publisher, 2013	
3.	UVM Cookbook, Verification Academy, 2013.	
4.	UVM User's guide, Accellera, 2011.	

ELECTIVES - SEMESTER II

	VLS 5231: Advanced Logic Synthesis		Т	Ρ	С	Total hours	
			0	0	3	36	
Course Ou	itcome						
2. Explai							
Unit	 Classify multilevel logic synthesis and technology mapping. Unit Topics 					No. of Hours	
I	I Introduction to logic synthesis						

(A constituent unit of MAHE, Manipal)

MANIPAL

	Two-level logic synthesis:	
	Introduction, Boolean algebra concepts, Minimization using k-map,	
II	Minimization using Tabular method, Consensus theorem, Iterative Consensus	14
	theorem , Recursive computation, Unate covering problem a) Reduction	
	technique b) MIS algorithm c) Branch and bound algorithm	
	Sequential logic synthesis:	
	Introduction, Basics of FSM concept, Minimization of completely specified FSM,	
ш	Equivalent partition algorithm, Minimization of Incompletely specified FSM,	13
	Compatible table, Maximum compatibles, Prime compatibles, Binate covering	
	problem, FSM traversal algorithms, Depth first search, Breadth first search,	
	Shortest path, State encoding and optimization	
	Multilevel logic synthesis:	_
IV	Introduction, Algebraic and Boolean Division, Kernels and Cokernels	5
	Algebraic and Boolean resubtitution methods	
	Technology mapping:	
V	Graph covering and Technology mapping, Tree covering by Dynamic programming,	3
	Decomposition, Delay optimization and Graph covering	
Referen	ces	
	ic Synthesis and Verification Algorithms",Gary D. Hachtel and Fabio Somenzi (Kluw	er Academic
Publ	ishers)	
2. "Log	ic Minimization Algorithms For VLSI Synthesis" ,Robert K. Brayton ,Gary D. Hacht	el, Curtis T.
McM	ullen and Alberto L. Sangiovanni-Vincentelli (Kluwer Academic Publishers)	
1		

VLS 5232: Formal Methods		т	Ρ	С	Total hours	
		0	0	3	36	
Course Outcome						
1. Understand the relevance of formal methods in hardware and software design						
2. Describe the theoretical foundations of formal methods						
3. Explain the contemporary technologies for formal verification						

(A constituent unit of MAHE, Manipal)

MANIPAL

ι	Jnit	Topics				
		The relevance of formal methods in hardware and software design:				
		Comparison to standard methods: simulation, and testing, the difficulty in				
	I	adopting formal methods in industry, the state of the art in formal verification of	3			
	systems, Nondeterministic systems, Reactive systems, and real-time systems,					
		Different approaches to formal methods, Specification and verification of reactive				
		systems, Model checking real-time systems, Program verification.				
		Theoretical foundations of formal methods:				
		Formal specification, First-order logic for sequential systems, Temporal logic for				
		reactive systems, Transition systems, Timed automaton for real-time specification,				
	II	Specification of system properties, safety properties, progress properties: fairness	15			
		and starvation, partial correctness and total correctness, Formal verification,				
		Explicit state model checking, Symbolic model checking, Sequential program				
		verification				
		Contemporary technologies for formal verification:				
	111	NuSMV 2 for hardware verification, Simulation and Model checking, Spin for	18			
	111	concurrent reactive system verification, Simulation and Model checking, UPPAAL	10			
		for real-time systems				
Ref	ference	25				
1.	Logic	in Computer Science: Modeling and Reasoning about Systems, Second edition, Micha	ael Huth and			
	Mark F	Ryan, Cambridge University Press.				
2.	. Principles of Model Checking, Christel Baier and Joost-Pieter Katoen, MIT Press.					
3.	. Model Checking, Edmund M. Clarke Jr., Orna Grumberg, and Doron A. Peled, MIT Press.					
4.	. The SPIN Model Checker - Primer and Reference Manual. Gerard Holzmann, Addison-Wesley					
5.	NuSMV: http://nusmv.fbk.eu/					
6.	. UPPAAL: http://www.it.uu.se/research/group/darts/uppaal/index.shtml					
7.	SPIN:	http://spinroot.com/				

VLS 5233: Machine Learning for VLSI Design	L	т	Р	с	Total hours
	3	0	0	3	36

MANIPAL (A constituent unit of MAHE, Manipal)

Course Outcome

- 1. Identify the goals, applications, types and design issues of machine learning techniques.
- 2. Analyse different machine learning algorithms.
- 3. Describe machine learning in VLSI computer-aided design.

Unit	Topics				
	Introduction: Aims and applications of machine learning, learning systems,				
Ι	various aspects of developing a learning system	3			
II	Linear and Logistic Regression: Linear regression, Decision trees, overfitting	3			
	Instance based learning: Instance based learning, Feature reduction,				
III	Collaborative filtering-based recommendation				
IV	Bayesian learning: Probability and Bayes learning	3			
V	Logistic Regression: Logistic Regression, Support Vector Machine, Kernel	3			
·	function and Kernel SVM	5			
VI	Neural network: Perceptron, multilayer network, backpropagation, introduction	3			
	to deep neural network	5			
VII	Computational learning: Computational learning theory, PAC learning model,				
VII	Sample complexity, VC Dimension, Ensemble learning	3			
VIII	Clustering: k-means, adaptive hierarchical clustering, Gaussian mixture model	3			
IX	Machine Learning in VLSI Design: A Taxonomy for Machine Learning in VLSI	3			
IA	Design	2			
v	Machine Learning for Lithographic Process Models: Masks, and Physical Design,	٢			
Х	Yield Enhancements, Machine Learning based Aging Analysis	6			
XI	Machine Learning Hardware: Energy-Efficient Design of Advanced Machine	3			
ΛI	Learning Hardware	2			
Referenc	ies in the second s				
1. Bisho	p, C. (2006). Pattern Recognition and Machine Learning. Berlin: Springer-Verlag.				
2. Ether	n Alpaydin, Introduction to Machine Learning, PHI				
3. Trevo	or Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning Da	ita			
Minin	g,Inference,and Prediction				

(A constituent unit of MAHE, Manipal)

4. Elfadel, Ibrahim M., Duane S. Boning, and Xin Li, eds. Machine Learning in VLSI Computer-Aided Design. Springer, 2019.

VLS 5234: Physical Design		L	т	Ρ	С	Total hours	
		3	0	0	3	36	
Course Outcome						•	
1. Describe CMOS logic gate design, identify physical design of simple gates, give examples logic stru							
	2. Explain procedure involved in floorplan step, placement, clock tree synthesis, routing, and extraction of						
layo							
	sify digital testing, give examples of fault modelling ribe design for testability, ad-hoc DFT, scan based de				single si	tuck at faults,	
uesc	libe design for testability, ad-not DFT, scall based of	esigns, Duitt	-m seu-	lest.		No. of	
Unit	Topics					Hours	
						liours	
I CMOS circuit and layout design: CMOS logic gate design- Basic physical design of simple gates - CMOS logic structures - Clocking strategies					3		
II	II Floorplan: Technology File, Circuit Description, Design Constraints , Design Planning, Power Planning, Macro Placement, Design of Floorplan					4	
111	III Placement: Global Placement, Detail Placement					3	
IV	IV Clock tree synthesis: Clock tree synthesis, Power Analysis					6	
v	Routing: Global Routing, Detail Routing					6	
VI	VI RC extraction: Resistance extraction, Capacitance extraction, Inductance and impedance (RLC) extraction					4	
VII	Back annotation: Back annotation procedure, Back Annotation Calculation						
VIII	Testing: Introduction to Digital Testing - Fault modeling - Fault Simulation - Testing for Single stuck faults - Design For Testability (DFT) - Ad-Hoc DFT - Scan based designs - Built-In Self-Test (BIST)						

(A constituent unit of MAHE, Manipal)

References

- 1. Neil H. E. Weste, David Harris, Kamran Eshraghian, "Principles of CMOS VLSI Design: A systems perspective", Third Edition, Addison Wesley, 2008
- 2. Majid Sarrafzadeh, C. K. Wong , "An introduction to VLSI physical design", McGraw Hill, 1996, ISBN 0070571945, 9780070571945, 334 pages
- 3. Khosrow Golshan, "Physical design essentials: an ASIC design implementation perspective", Springer, 2007, ISBN 0387366423, 9780387366425, 211 pages
- 4. Ban P. Wong, Anurag Mittal, Yu Cao, Greg Starr Contributor Ban P. Wong, Anurag Mittal, Yu Cao, "Nano-CMOS circuit and physical design", John Wiley and Sons, 2004, ISBN 0471466107, 9780471466109

VLS 5	VLS 5235: Wireless Communications and Antenna Design	L	т	Р	с	Total hours
		3	0	0	3	36
Course Outo	come					
1. Describe modern wireless and cellular communications.						
•	personal and ad-hoc wireless networks.					
3. Describe	e antenna design.					
Unit Topics						No. of Hours
Introduction: Types of wireless communication, different generations and standards in cellular communication system, satellite communication including GPS, wireless local loop, cordless phone, paging systems, RFID, Cell capacity and reuse, Mobile Radio Propagation						6
Modern wireless technologies:Multicarrier modulation, OFDM, MIMO system,IIMIMO-OFDM system, cognitive radio, software defined radio, communication relays, spectrum sharing.						6
Wireless and Cellular Communication: Multiple Access Schemes: FDMA, TDMA, III CDMA and SDMA - Cellular Concept: Frequency Reuse - Channel Assignment - Handoff - Cell Splitting - Cell Sectoring - Micro Zone Method						

(A constituent unit of MAHE, Manipal)

	Wireless personal area networks: Wireless personal area networks (Bluetooth,			
N7	UWB and ZigBee), wireless local area networks (IEEE 802.11, network architecture,	4		
IV	medium access methods, WLAN standards), wireless metropolitan area networks	6		
	(WiMAX).			
	Ad-hoc wireless networks: Design Challenges in Ad-hoc wireless networks,			
V	concept of cross layer design, security in wireless networks, energy constrained	4		
v	networks. MANET and WSN. Wireless system protocols, mobile network layer			
	protocol, mobile transport layer protocol, support for mobility.			
	Antenna design: Introduction to Antennas, Fundamental parameters of antenna,			
M	Antennas for Various Applications, Dipole, Monopole, Loop and Slot Antennas,	8		
VI	Linear and Planar Arrays, Microstrip Antennas, Helical Antennas, Horn Antennas,	0		
	Reflector Antennas			
ferences	5			
Andrea	Goldsmith, "Wireless Communications", Cambridge University Press, 2005.			

- 2. Sanjay Kumar, "Wireless Communication the Fundamental and Advanced Concepts" River Publishers, Denmark, 2015 (Indian reprint).
- 3. Vijay K Garg, "Wireless Communications and Networks", Morgan Kaufmann Publishers an Imprint of Elsevier, USA 2009 (Indian reprint)
- 4. J. Schiller, "Mobile Communication" 2/e, Pearson Education, 2012.
- 5. Iti Saha Misra, "Wireless Communication and Networks: 3G and Beyond", 2/e, McGraw Hill Education (india) Private Ltd, New Delhi, 2013.
- 6. C.A. Balanis, Antenna Theory Analysis and Design, John Wiley, 2005
- 7. J.D. Kraus and R.J. Marhefka, Antennas, McGraw Hill, 2003

ENP 5230: Entrepreneurship	L	т	Р	с	Total hours			
	3	0	0	3	36			
Course Outcome	Course Outcome							
1. Explain the importance of entrepreneurship and	entreprene	eurial d	develop	ment	model, social			
responsibilities of business								
2. Describe Entrepreneurial Traits and Factors affecting E	Intrepreneur	ship pro	cess					

* (A constituent unit of MAHE, Manipal)

Introduction to Entrepreneurship:	
Meaning and Definition of Entrepreneurship-Employment vs Entrepreneurship, Theories of Entrepreneurship, approach to entrepreneurship, Entrepreneurs VS Manager	6
Entrepreneurial Traits: Personality of an entrepreneur, Types of Entrepreneurs	5
Process of Entrepreneurship: Factors affecting Entrepreneurship process	6
Business Start-up Process: Idea Generation, Scanning the Environment, Macro and Micro analysis	7
Business Plan writing: Points to be considered, Model Business plan	6
Case studies: Indian and International Entrepreneurship	6
nces	
	Manager Entrepreneurial Traits: Personality of an entrepreneur, Types of Entrepreneurs Process of Entrepreneurship: Factors affecting Entrepreneurship process Business Start-up Process: Idea Generation, Scanning the Environment, Macro and Micro analysis Business Plan writing: Points to be considered, Model Business plan Case studies: Indian and International Entrepreneurship

ESD 5232: IT Project Management	L	т	Р	С	Total hours	
	3	0	0	3	36	
Course Outcome						
1. Illustrate the importance of project planning.	1. Illustrate the importance of project planning.					
2. Discuss and demonstrate various tools applicable for different phases of the software project.						
3. Illustrate the importance of Change management.						

(A constituent unit of MAHE, Manipal)

- 4. Illustrate the importance of team work and demonstrate the usefulness of tools in effective handling of the project.
- 5. Compare the problems in projects that don't follow the process and discuss new trends in software life cycle.

Unit	Topics	No. of Hours
I	Software Project Planning: Understand the Project Needs, Create the Project Plan, Diagnosing Project Planning Problems	3
II	Estimation: Elements of a Successful Estimate, Wideband Delphi Estimation, Other Estimation Techniques, Diagnosing Estimation Problems.	3
111	Project Schedules: Building the Project Schedule, Managing Multiple Projects, Use the Schedule to Manage Commitments, Diagnosing Scheduling Problems.	3
IV	Reviews: Inspections, Deskchecks, Walkthroughs, Code Reviews, Pair Programming, Use Inspections to Manage Commitments, Diagnosing Review Problems.	4
v	Software Requirements: Requirements Elicitation, Use Cases, Software Requirements Specification, Change Control, Introduce Software Requirements Carefully, Diagnosing Software Requirements Problems	4
VI	Design and Programming: Review the Design, Version Control with Subversion, Refactoring, Unit Testing, Use Automation, Be Careful with Existing Projects, Diagnosing Design and Programming Problems	4
VII	Software Testing: Test Plans and Test Cases, Test Execution, Defect Tracking and Triage, Test Environment and Performance Testing, Smoke Tests, Test Automation, Postmortem Reports, Using Software Testing Effectively, Diagnosing Software Testing Problems	4
VIII	Understanding Change: Why Change Fails, How to Make Change Succeed	3
IX	Management and Leadership:	2

	Take Responsibility, Do Everything Out in the Open, Manage the Organization, Manage Your Team					
x	Managing an Outsourced Project: Prevent Major Sources of Project Failure, Management Issues in Outsourced Projects, Collaborate with the Vendor	3				
хі	XI Process Improvement: XI Life Without a Software Process, Software Process Improvement, Moving Forward					
Refere	ences					
 "Applied Software Project Management", Jennifer Greene, Andrew Stellman (O'Reilly Publications), 2005. 						
2. "The Art of Project Management", Scott Berkun (O'Reilly Publications), 2005.						

	ESD 5236: System Software	L	т	Ρ	с	Total hours
		3	0	0	3	36
Course O	utcome					
1. Desig	ning Assemblers, Loaders, linkers and Compilers.					
2. Distin	guish context free grammars and parsers					
3. Descr	ibe intermediate code and code optimization technic	ques				
Unit	Teste					No. of
Unit	Unit Topics					
	Assemblers:					_
	Designing one pass and two pass assemblers, Macro	-processors.				5
	Loaders and linkers:					2
II	Static linking, Dynamic Linking.					2
	Compilers:					
III Lexical Analyzers- Regular Expressions, Finite State Machines - NFA, DFA - Obtaining						10
DFA from regular expressions, Designing lexical analyzers .						
IV Context Free Grammars:						9

	Languages, Grammars, Ambiguity, Parse Trees- Parsing, top-down parsing, bottom-						
	up parsing ideas, Recursive Descent Parsing: Removing left recursion. Designing						
	recursive descent parsers, Predictive Parsing: LL(1) grammars .						
	Bottom-up Parsing with LR(k) parsers:						
V	Handles, viable prefixes, shift/reduce parsing, LR(0) items, SLR(1) parser and its	4					
	limitations, LR(1) parser .						
VI	Intermediate Code:	2					
VI	Parse Trees, Three address codes, Quadruples and triples.	Z					
VII	Introduction to code optimization:	4					
VII	Principle sources of optimization, Introduction to dataflow analysis.	4					
Referen	ces						
1. "Pri	nciples Of Compiler Design", Aho, Sethi and Ullman						
2. "Pri	2. "Principle Of Compiler Design", Aho and Ullman						
3. "Co	3. "Compiler Construction In C", Alan Holub						
4. "Sys	4. "System Software", Dhamdhere						

	VLS 5251: Advanced VLSI Design Lab	L	т	Ρ	С	Total hours
		0	0	3	1	36
Course Ou	Course Outcome					
-	and simulate various analog VLSI building blocks. and simulate mixed signal circuits - ADCs and DACs.					
Unit	Unit Topics					No. of Hours
I Design and simulate current sources, sinks and references					9	
II Design and simulate various amplifier configurations					15	
III Experiment with nonlinear and dynamic analog circuits					7	
IV Design and analyse various data converter architectures						5

(A constituent unit of MAHE, Manipal)

MANIPAL

References

- 1. "CMOS Circuit Design, Layout, and Simulation", Baker, Li, & Boyce, IEEE Press, 1998.
- 2. "Design of Analog CMOS Integrated Circuits", Razavi, McGraw-Hill, Inc., 2000.
- 3. "Analog Integrated Circuit Design", Johns & Martin, John Wiley & Sons, 1997.
- 4. "CMOS Analog Design, 2nd Ed.", Allen & Holberg, Oxford Univ. Press, 1987.
- 5. "Analysis and Design of Analog Integrated Circuit", Gray & Meyer, John Wiley & Sons, 1984.
- 6. "Analog VLSI", Mohammed Ismail, & Terri Fiez, McGraw-Hill, Inc.
- 7. "VLSI Design Techniques for Analog and Digital Circuits", Geiger, Allen, & Strader, McGraw-Hill, Inc.,
- 8. Cadence user manual

	VLS 5252: Low Power VLSI Design Lab	L	т	Ρ	с	Total hours
	· · · · · · · · · · · · · · · · · · ·	0	0	3	1	36
Course Ou	utcome					
1. Experi	ment static and dynamic power components.					
2. Implei	ment static power reduction techniques.					
3. Apply	dynamic power reduction techniques.					
Unit Topics					No. of Hours	
I	Power dissipation in CMOS: Dynamic and Static power components, dynamic power components					9
II	Static power reduction techniques for low power					15
III Dynamic power reduction techniques for low power						12
Reference	25					
1. "Low-	Power CMOS VLSI Circuit Design", Kaushik Roy and Sharat C.	Prasad,	Wiley	-Inter	scien	ce.
2. "CMO	2. "CMOS Low Power Digital Design", A. Chandrakasan & R. Brodersen, Kluwer Academic Pubs. 1995.					
3. "Low	3. "Low Power Design Methodologies", J. Rabaey & M. Pedram, , Kluwer Academic Pubs. 1996.					

- 4. "Low Power Digital VLSI Design, Circuits and Systems", Bellaour & M.I. Elamstry ,Kluwer Academic Publishers, 1996.
- 5. S. Imam & M. Pedram, Kluwer Academic Publishers, 1998.
- 6. "Logic synthesis for Low power VLSI Designs", B.G.K.Yeap, "Practical Low Power Digital VLSI Design", Kluwer Academic Publishers, 1998.

VLS 5253:	VLS 5253: Scripting for VLSI Lab	L	т	Ρ	с	Total hours	
		0	0	3	1	36	
Course Ou	ıtcome						
2. Opera	2. Operate SED & AWK commands to do more complex task in easy way.						
Unit	Unit Topics						
I	Introduction					6	
II	Shell Programming					6	
	Power Tools					9	
IV	IV Perl						
Reference	References						
	1. "Introduction to Linux - A Beginner's Guide", Machtelt Garrels						
4. "Prog	4. "Programming Perl", Larry Wall, Tom Christiansen, Jon Orwant						

		L	Т	Р	с	Total hours		
VLS 525	4: Universal Verification Methodology Lab	ersal Verification Methodology Lab 0 0 3						
Course (purse Outcome							
1. Unde	erstand the features and capabilities of the UVM clas	s library for	System\	/erilog.				
2. Crea	te and configure reusable, scalable, and robust UVM	Verification	Compoi	nents (l	JVCs).			
3. Com	bine multiple UVCs into a complete verification envi	ronment.						
	- .					No. of		
Unit	Topics					Hours		
I	UVM Methodology, Stimulus Modeling, Test and Tes	tbench Class	ses			12		
II	UVM component classes, Configuration, UVM Seque	nces, Conne	cting to	a DUT		12		
	Interface and Module UVCs, Building a Scoreboard,	Register Mo	deling			12		
Referen	References							
1. Vane	1. Vanessa R. Cooper, "Getting started with UVM: A beginner's guide", Verilab publisher, 2013.							
2. Syste	2. SystemVerilog 3.1a Language Reference Manual							

		L	т	Ρ	С	Total hours			
	VLS 5281: Advanced Logic Synthesis Lab	0	0	3	1	36			
Course (Course Outcome								
1. Conv	rert behavioral level logic hardware description lang	uage into reg	gister tra	ansfer l	ogic.				
2. Appl	2. Apply constraints and synthesize the combinational and sequential digital circuits.								
3. Anal	3. Analyze the area, power, and performance reports.								
Unit	Topics					No. of			
onic						Hours			
	Write register transfer logic level code for com	binational a	nd sequ	uential	digital	_			
	systems					9			
	Perform logic synthesis of combinational and sequential circuit description in register								
II	transfer logic		•		-	18			
	-								

(A constituent unit of MAHE, Manipal)

- 111	Generate the synthesized netlist and analyse critical path delay, area, power, and performance of the digital system	9					
Referen	References						
1.	1. IEEE Standard for Verilog® Hardware Description Language by IEEE Computer Society						

2. Cadence manual for synthesis tool

	VLS 5282: Formal Methods Lab	L	Total hours						
						36			
-	Course Outcome								
1. App	ly equivalence checking on digital systems.								
2. App	ly Model checking on digital systems.								
3. Ana	lyze formal verification on clock domain crossing digi	tal systems.							
11	Topics					No. of			
Unit						Hours			
	Experiment with computer aided design tools for	r equivalend	ce chec	king to	check				
I	register transfer logic level and gate-level description	ons of a desi	gn repre	sent th	e same	12			
	design								
	Experiment with computer aided design tools for m	nodel-checki	ng form	al verif	ication				
II	with user-generated assertions					15			
	Analyse formal verification techniques for the di	gital system	ns with	clock	domain				
111	crossing					9			
Referer	nces								
1. Logi	ic in Computer Science: Modeling and Reasoning about	Systems, Se	econd ec	lition, I	Nichael I	Huth and Mark			
Rya	n, Cambridge University Press.								
2. Prin	ciples of Model Checking, Christel Baier and Joost-Pie	eter Katoen,	MIT Pre	ess.					
3. Mod	el Checking, Edmund M. Clarke Jr., Orna Grumberg, a	and Doron A	. Peled,	MIT Pre	ess.				
4. Cade	ence user manual for logic equivalence and formal ve	rification							

(A constituent unit of MAHE, Manipal)

		L	т	Р	С	Total hours
	VLS 5283: Machine Learning for VLSI Lab	0	0	3	1	36
Course	Outcome					
1. Ider	ntify the software and tools for designing machine lea	rning applic	ations.			
2. Арр	ly concept learning and hypothesis space.					
	nonstrate Artificial Neural Network, Clustering, Supp nforcement Learning models, Support Vector Machine		Machine	e, Deep) Neural	Network and
Unit	Topics					No. of Hours
Goals and applications of machine learning, Basic design issues and approaches to machine learning, Concept learning as search through a hypothesis space, General-to- specific ordering of hypotheses.						12
Probability theory and Bayes rule, Naive Bayes learning algorithm - Parameter smoothing, Logistic regression, Bayes nets and Markov nets for representing dependencies, Neurons and biological motivation, Activation functions and threshold units, Supervised and unsupervised learning, Perceptron Model: representational limitation and gradient descent training, Multilayer networks and back propagation, Overfitting.					12	
III	maximization (EM) for soft clustering, Semi	tional clu: -supervised margin um margin s	stering, learni linear eparatoi	Expenng wit sepa rs, Kerr	ctation th EM arators,	12
Referer	nces					I
1. Mac	hine Learning, T. Mitchell, McGraw-Hill, 1997					
2. Mach	nine Learning, E. Alpaydin, MIT Press, 2010					
3. Mach	nine Learning for Big Data, Jason Bell, Wiley Big Data	Series				

	L	т	Р	С	Total hours	
VLS 5284: Physical Design Lab	0	0	3	1	36	
Course Outcome	· · · · · · · · · · · · · · · · · · ·					
1. Constraint and synthesize the combinational and sequential digital circuits.						

	gn and implement the netlist using floorplan, placement, clock tree synthesis and routing yze the area, power, and performance reports.	g steps.
Unit	Topics	
I	Perform logic synthesis of combinational and sequential circuit description in RTL: Ripple Carry, Carry Look-Ahead, Latch, Flip-flops, counters, FSMs	15
II	Perform physical design flow: Use floorplan, placement, clock tree synthesis and routing	15
111	Back annotation: Extract resistance, capacitance, inductance and simulate the design. Generate and analyse area, power, and performance reports	
Referen	ces	
1. (Cadence manual for synthesis and physical design tool	

VLS 528	85: Wireless Communication and Antenna Design	L	т	Р	с	Total hours		
	Lab 0 0 3 1							
Course (Course Outcome							
1. Desc	ribe Matlab for wireless communication.							
2. Appl	y Matlab for digital modulation and modulation doma	ain analysis.						
3. Exan	3. Examine effects of filters and channel impact in wireless communication.							
llait	Lipit Topics							
Unit						Hours		
	Introduction to Matlab Toolbox and Simulink							
I	Introduction to RF system-level simulation of wirele	ess transceiv	ers:			6		
	Apply Model and Simulate for Wireless Systems,	Use Matlab	tools t	o desi	gn and			
П	implement wireless transceivers, Examine simula	tion for co	rrectnes	s of w	/ireless	18		
	transceivers							
	Design of Zigbee receiver: Use Matlab tools to implement Zigbee receiver, Examine							
	simulation for correctness receivers					12		
Referen	ces					<u> </u>		

- 1. Garg, V., 2010. Wireless communications & networking. Elsevier.
- 2. Cho, Y.S., Kim, J., Yang, W.Y. and Kang, C.G., 2010. MIMO-OFDM wireless communications with MATLAB. John Wiley & Sons.

		L	Т	Р	C	Total hours
	ENP 5280: Entrepreneurship Lab	0	0	3	1	36
Course O	utcome					
1. Study	of prominence of entrepreneurship.					
2. Devel	op use cases for building a business.					
3. Evalu	ation of factors influencing business venture.					
Unit Topics						No. of Hours
Study of use cases for need and prominence of entrepreneurship, associated decision making process.						6
II Study of report by the National Knowledge Commission on the importance of entrepreneurship in economic development.						6
III	Develop use cases for identifying and evaluating opportuniti business plan, assessment of resources, project appraisal an					9
IV	creating and starting venture includes legal requirements, n financial plans and human resources management	narket	ting	strategie	s,	9
V Design a Case studies of Indian and International Entrepreneurship.						6
Referenc	es					1
1. Mana	gement and Entrepreneurship, NVR Naidu and T. Krishna Rao, I	K Inte	ernat	tional Put	olishir	ng House
Pvt.L	cd, 2008.					
2. Funda	mentals of Entrepreneurship, Mohanthy Sangram Keshari, PHI	Learn	ing l	Pvt. Ltd.,	2005	j.

		L	т	Р	с	Total hours	
	ESD 5282: IT Project Management Lab 0 0 3 1					36	
Course Outcome							
1. Iden	tify the skills and techniques required for project life	e cycle.					
2. Illus	trate essential principles associated with project	managemen	t and t	heir ap	oplicatio	n in business	
envi	ronment.						
3. Outl	ine commonly available project management tools.						
						No. of	
Unit	Topics					Hours	
Software project management and its need, evaluation techniques, Project cost estimation techniques.					12		
II Activity scheduling techniques, cost monitoring, contract management and its necessity risk analysis.					12		
	III Software quality enhancement techniques, people management in software environment and project team structure.						
Referen	Ces						
1. "App	olied Software Project Management", Jennifer Green	e, Andrew S	tellman	(O'Reil	ly Public	ations), 2005.	
2. "The	e Art of Project Management", Scott Berkun (O'Reilly	Publication	s), 2005.				

	L	т	Р	С	Total hours		
ESD 5286: System Software Lab	0	0	3	1	36		
Course Outcome	Course Outcome						
1. Design programs for assembler, loader & linker, and compilers							
2. Design programs for context free grammars and parsers	i						
3. Design programs for intermediate code and code optim	ization techni	ques					
Unit Topics					No. of Hours		

(A constituent unit of MAHE, Manipal)

I	Assembler, Loader & Linker, and Compilers: one pass and two pass assemblers, Static linking, Dynamic Linking, Lexical Analyzers- Regular Expressions, Finite State Machines - NFA, DFA - Obtaining DFA from regular expressions, Designing lexical analyzers	15						
11	Context Free Grammars and Parsers: Parse Trees- Parsing, top-down parsing, bottom-up parsing ideas, Recursive Descent Parsing: Removing left recursion. Designing recursive descent parsers, Predictive Parsing: LL(1) grammars	15						
	Intermediate code and code optimization techniques: Three address codes, Quadruples and triples, dataflow analysis							
Referen	ces							
1. Prine	ciple of Compiler Design by Aho and Ullman							
2. Com	2. Compiler Construction in C by Alan Holub							

0 0 4 48	MPT 5200 Mini project - II	L	т	Ρ	с	Total hours
		0	0	0	4	48

Course Outcome

- 1. Identify the real-world and social relevant problems and perform feasibility analysis for finding solutions.
- 2. Develop solutions to the identified problems by applying research methodology and development life cycle with appropriate documentation by incorporating ethical standards.
- 3. Work effectively as a member in a team and communicate technical information effectively.

Unit	Topics	No. of Hours
I	Problem identification, literature survey, formation of detailed specifications.	
II	Design and implementation of the proposed system architecture.	48
III	Demonstrate an ability to present and defend project work carried out to a panel of experts.	
References		

MANIPAL (A constituent unit of MAHE, Manipal)

1. Research articles and Online Resources.

	PSD 5200: Professional Skill Development - II	L	т	с	Total hours						
0 0 1											
Course Outcome											
1. Develop the skills needed for approaching technical and HR interviews.											
2. Use mathematical, reasoning, and domain specific skills to solve objective questionnaires in time											
3. Demonstrate depth of knowledge in the chosen field of study.											
Unit	Unit Topics										
I	I Peer interviews, mock interviews.										
II Logical reasoning, mathematical aptitude, domain specific problem solving skills.											
III Conduction of domain specific knowledge test.											
References											
1. R S Aggarwal. Quantitative Aptitude for Competitive Examinations. S Chand, 2017.											
2. McDowell, Gayle Laakmann. Cracking the coding interview: 189 programming questions and solutions.											
CareerC	CareerCup, LLC, 2015.										
3. Domain	specific tools and online resources.										

VLS 6098: Project Work	L	т	Ρ	С	Total hours
	0	0	0	25	300

(A constituent unit of MAHE, Manipal)

MANIPAL

Course Outcome

- 1. Undertake innovative industry/research oriented projects and perform feasibility analysis for finding solutions.
- 2. Implement and test the proposed design using appropriate framework, programming language and tools.
- 3. Demonstrate an ability to present and defend project work carried out to a panel of experts.

Unit	Topics	No. of Hours
I	Problem identification, literature survey, formation of detailed requirement specification document.	
II	Design and implementation of the proposed modules with specific test cases.	300
III	Detailed report of the work carried out, present, and defend the project work carried out to a panel of experts.	
Referenc	es	
1. Resea	rch articles, domain specific tools and online resources.	

(A constituent unit of MAHE, Manipal)

Program Outcome and Course Outcome Mapping

SI. No.	Course Code	Course Name	Credits	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11
1		High Level Digital Design	3	*	*	*		*						
2	VLS 5101	Data Structures	3	*	*	*						*		
3	VLS 5102	Digital Systems & VLSI Design	3	*	*	*		*				*		
4	VLS 5103	Verification	3	*	*	*		*			*			
	VLS 5131	CAD for VLSI	3	*	*	*		*						
5		System on chip Design	3	*	*	*		*	*					
	E3D 2001	Digital Signal Processing	3	*	*	*		*						
6		High Level Digital Design Lab	1	*	*	*		*						
7	VLS 5151	Data Structures Lab	1	*	*	*						*		
8		Digital Systems & VLSI Design Lab	1	*	*	*		*				*		
9	VLS 5153	Verification Lab	1	*	*	*		*			*			
	VLS 5181	CAD for VLSI Lab	1	*	*	*		*						
10		System on chip Design Lab	1	*	*	*		*	*					
		Digital Signal Processing Lab	1	*	*	*		*						
11	MPT 5100	Mini Project - 1	4				*	*	*	*	*		*	*
12		Professional Skill Development - I	1	*							*	*		*
13	VLS 5201	Advanced VLSI Design	3	*	*	*	*	*						
14	VLS 5202	Low Power VLSI Design	3	*	*	*	*	*						
15	VLS 5203	Scripting for VLSI	3	*	*	*								
16		Universal Verification Methodology	3	*	*	*		*			*			
		Advanced Logic Synthesis	3	*	*	*	*							
17		Formal Methods	3	*	*	*		*			*			
	VLS 5233	Machine learning for VLSI Design	3	*	*	*	*		*					

	VIS 5234	Physical Design	3	*	*	*		*						
	VLJ JZJ4	Wireless	3											
		Communications and Antenna Design		*	*	*								
	ENP 5230	Entrepreneurship	3	*		*			*	*	*		*	*
	ESD 5232	IT Project Management	3	*		*		*		*	*	*		
	ESD 5236	System Software	3	*	*	*								
18	VLS 5251	Advanced VLSI Design Lab	1	*	*	*	*	*						
19	VLS 5252	Low Power VLSI Design Lab	1	*	*	*	*	*						
20	VLS 5253	Scripting for VLSI Lab	1	*	*	*								
21		Universal Verification Methodology Lab	1	*	*	*		*			*			
	VLS 5281	Advanced Logic Synthesis Lab	1	*	*	*		*			*			
	VLS 5282	Formal Methods Lab	1	*	*	*	*		*					
	VLS 5283	Machine Learning for VLSI Design Lab	1	*	*	*		*						
	VLS 5284	Physical Design Lab	1	*	*	*								
22		Wireless Communications and Antenna Design Lab	1	*		*			*	*	*		*	*
	ENP 5280	Entrepreneurship Lab	1	*		*		*		*	*	*		
	ESD 5282	IT Project Management Lab	1	*	*	*								
	ESD 5286	System Software Lab	1	*	*	*		*			*			
23	5200	Mini Project - II	4				*	*	*	*	*		*	*
24		Professional Skill Development - II	1	*							*	*		*
25	VLS 6098	Project Work	25	*	*	*	*	*	*	*	*	*	*	*